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The article conslders a system analogous to that described in [1] for the
self-contained determination of the coordinates of the center of gravity of
a moving object and 1ts orientatlion both with respect to the horizon plane
and in azimuth.

For arbitrary motion of an object near the surface of the earth, we derive
and analyze the equations for the ideal operation of such a system (the equa-
tions of relative equilibrium) and the error equations, 1.e. the equations
of small oscillations about a position of relative equilibrium. The basilc
instrument errors of components of the system are taken into account.

The equatlions consldered here are fairly general. The equatlons and re-
sults obtained in [1] to (7] follow from these as speclal cases.

1. We introduce a right-handed orthogonal coordinate system 0'Zynyly ;
its origin 0’ 1s situated at the center of the earth, the (,-axis 1s direct-
ed along the earth-rotation angular velocity vector u and the g, and ny
axes are in the plane of the equator, so directed that the trihedron §,mu{s
retains a constant orlentation with respect to the fixed stars. If we neglect
the orbital motion of the earth, this system of coordinates may be considered
inertial.

We introduce the coordinate system 0'g,m,(, bound to the earth ; the
(o, ~axls of this system coincides®’with the (. -axls and E,-axls 1s directed
along the intersection of the equator with the plane of the Greenwlch me-
ridian. We shall assume that the coordinate systems Eumu{s 8nd E;no{o
coincide at the zero time.

The position of an arbitrary point in the §,n,{, coordinate system will
be difined by spherical coordinates: the latitude ¢ , the longitude A ,
and the distance R of the point from the center of the earth 0’. Thenthe
unit vector p 1in the direction from ¢’, the center of the earth, to the
arbitrary point (¢ wlll be

43



4b V.D. Andreev

(@A) = & coscos A + mo cos ¢ sin A -+ Qosing 1.1
Here §&,, m, and {, are unit vectors of the corresponding axes.
Furthermore, we introduce the coordinate system 0'Eng , bound to two

directions p, (@ ,%,) and p;(®;,1;) which remain fixed in the £,m,(, co-
ordinate system, in such a way that

— _ Pz—p160s Sy _ PLXops
E—Pl» "]——"—Siﬁ‘so——, Q—m, COSS0=pl-pg (1.2)

The position of the center of gravity 0 of an object moving in the Eng
coordinate system will be defined by spherical coordinates: the angle S
measured 1n the ¢g€n plane from the g£-axls toward the n-axls, the angle z
measured from the £&n plane toward the (-axis, and the distance R of the
point ¢ from 0’, the center of the earth.

We shall attach the Darboux trihedron 0x,jy, 2z, to the point 0 . Its
z,-axls 1s directed along the line ¢’0 away from the center of the earth
and y, -axls lies in the plane containing the point (¢ and the axis (‘¢
The arrangement of the gn{ and

X1y, 21 coordinate systems rela- I 13 | 1 l ¢
tive to each other is determlned
by the table of direction cosines 1 —sin§ cos § 0 (1.3)
shown at the right. y1 |—sin z cosS |— sin z sin S| cos z
z1 | cosz cos S cos z 8in S| sin z

If the gn{ and gyn,{, co-
ordinate systems coincide, then
the angles 2 and S become the geocentric latitude ¢ and longitude &,
and the x,y,2; trihedron becomes orlented with respect to the cardinal points.

We shall also attach to the center of

| & | nn | =&
gravlty of the obJect the trihedron 0Ox,y, 2o
%o cos3 sine 0 (1.4) obtained from the x, y, 2z; trihedron by rotating
Yo | —sing| cose | 0 through an angle ¢ about the 2,-axis, de-
Zo 0 0 1 fined by the table of direction cosines shown

at the left . If ¥,, ¥y,and U, are the
projections of the absolute velocity of the motion of the point (¢ on the
Xos Yo and &, axes, Wy, Oy, and O, are the projections of the absolute

angular velocity of the x,1,2, trlhedron on its axes, then
vy, = Ray,, vy, = —Roy,, v, =R (1.5)

Here and hereafter, a dot will be used to denote differentlation with
respect to time.

Using (1.2), (1.3) and (1.4), we can express M, Oy,,and ®; by =z ,5 ,¢’
and by u the angular veloclty of the rotation of the earth
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o0y, = (— 2+ u (— ng sin § + ng, cos S)) cos e + (1.6)
4+ (S" cosz 4+ u (— ny,; sin z cos § — ng, sin z sin S + ngy €oS 2)) sin &
0y, = —(— z -+ u (— ng; sin S + ng, cos S)) sin e +

+ (S" cos z 4+ u (— ng, sin z cos S — ng, sin zsin S + ny, cos z)) cos &
©z, = S sin z 4 u (ng cos zcos S + ng, coS z5in S + ngg sin 2) + &

Here ng , nap and ng; are the cosines of the angles between the (,-axls

and the §g,n,( axes ; they are equal [8] to 1.7
s sin @y — sin ¢y cos Sy €0S g COS (1 Sin (A — Ag)
= 81 n = — = -
ng; D@y, TNg Sin S, » Ngg sin S,

Solving Equations (1.7) for 2z°', S and ¢’ and integrating, we have
t

z = —S [@,, cos & — @y, Sin &€ — u (— ng; sin S + ngy cos S)] dt + 2°
0
' 1
S = Scosz [w,, sin & + @y, cos e — u (— ny, sin zcos S — (1.8)
1}

— ngy 8in 2 8in S + ngy cos 2)] dt + S°

u

w53 (M81 €08 S+ ngy sin S)] dt + &°
If ©y, @y, and ©;, are known as functions of time, we can set up a com-
puting scheme simulating Equations (1.8) and thus find z, § and e

¢
e = S [0, — tg z (04, sin & + @y, cos €) —
0

2, Let the inertial attitude control (Fig. 1) consist of a platform (the
trihedron Oxyz) bound to the object by a three-gimbal suspension (not shown
in Fig. 1). Three gyroscopes G,,G; and G, with kinetic moments g, ,H#, and
Hs are supported in three-gimbal suspensions on the platform. By applying
the moments ¥,, M, and ¥, to the gyroscopes, we can make the platférm rotate
with the angular velocities [1]

0r= (M. H)=m;, oy,=(My/Hy)=my, o (M,/Hg=m (21)

Three accelerometers [1] a,s;a, and g, are rigldly connected to the plat-
form ; thelr axes of sensitlivity are directed along the xyz axes. If we
make the xyz and Xx,y,2z, trihedra colncide at time zero, then from the
accelerometer readings we can set up the moments ¥, , M, and ¥, so that for
an arbltrary motion of the object, Equations

Ox = Oy, Oy = 0y, 0, = 0, (2.2)

will always be satisfled and the trihedra will colncilde throughout the time
that the object moves.

We shall assume that the sensitive masses of the accelerometers are point
masses concentrated at the point ¢ Then, having established the necessary
relationship between the coeffilclent of elasticity of the suspenslon of the
sensitive mass and its magnitude, we can regard the accelerometer readings
as being equal to
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ax=Qx+Fx, av=Qy+Fw az=Qz+Fz (23)
where ¢, ,¢, and ¢, are the projectlons of the 1nert1al<force {referred to
a unit mass) of the translatory motion
of the xyz coordinates origin, on the
axes of sensitivity of the accelerometers
and F,, F, and p, are the projections
of the earth's gravitational force acting
on a unlt mass situated at (. The system
of coordinates 0'gunylyx 18 considered
Inertial, consequently

Qx, = —(Roy) — Roy, — Roz0,,

G 0y = (Ros) — Rontoy, + 0xR  (2.4)
Fig. 1 Q., = —R" + R (04 + o)
If we neglect the non-central gravitational fileld of the earth, we have
F,=F,=0F,=—k/R*=—g(R) (2.5)
From (2.3), (2.4) and (2.5) we find
o, = [S (— @ — 0 R — Rogw.,) dt + R°m,,,°:i (2.6)
¢

t
0= [g (a,, + Rosoy, — 0uR) dt - R"m:,]
0

14 1
R={(—a,+Ri+ao) —g®d+®?, R=(Ra+r
0

[
We shall now set up m_.,',and My, simulating equations {2.9), 1.e. we shall

define My,, and My, by Equations
t

i .
mx. = —E[S ({;U. + Rmz'mﬂ. - mx‘R ) dt + Romx.o}

(2.7)

i .
My, = -ﬁ_{ ("'" B, — mzf.R —R mx.mZ.) dt + Romvoe]

The quantities ® and 7’ required for setting up the right<hand sides of
(2.8), are obtained from thé last two equations of (2.6) if we replace (g,
and {y, in those equatlons by m,, and my, ; we then obtain

¢ t
R = S(- a, + R (m.?+m,2 —gR)dt+ (R)°, R= SR‘ dt+R° (2.8)

g ¢

D R =

It is readily seen that m, may be set up as an arbitrary function of time
my, = g, (1) (2.9)
Evidently, the moments set up in this manner will identically satisfy



lnervial systems of determination of coordinates 47

Equations (2.2).

We now make use of {1.8) to find =z, § and ¢
i
z= .,.& [m,, cos e — my,sin &€ — u (— ny, sin S + ngy cos )1 dt + z°
o

S

I

t

S coisz [m sine -+ my cose —u(— ngsinzcosS —

0 (2.10)
— ng,8in zsin § + nggcos z)1 dt + S°

t

g = S [mzo — un 2 (M, Sin & + my, cos &) — co'; = (ny cos S + ngg sin S)] dt + e°
Q

Equaticns (2.1}, (2.3), (2.4}, (2.5}, (2.7), (2.8}, {2.9) and {2.10) form
a closed system of equations for ideal (unperturbed) operation of an inertial
attitude control.

In {2.5) the gravitational field of the earth was assumed to be central.
If we assume that the earth's gravitatlonal force acting on the sensitive
mass of an accelerometer lles 1n a plane containing the axis of rotation of
the earth, then for the projections ¥, Fv‘s and ¥, on the axes of a tri-
hedron oriented with respect to the cardinal points (with the Oyg,-axis
pointing North), we have

Fo = 0, F,=F, (R,9), F, =F, (R, @) (2.11)
Noting that
c08 (yslo) €os (zyy3) = cos (z;40), cos (y38o) €08 (yyy;) = cos (11lo) (212
we can use (1.2), (1.3) and (1.4) to find
F% = (Fv. /cos@) [(— ng sin § < nggcosS)cos e
<+ (— ng sin 2 €05 § — nygsin z5in S -} ng, os 2) sin &)
le. = (F,, /cosg) [— (— ny sin§ + ngq c08 S) sin e 4
~+ {— ngy sin 2 ¢0s§ — ng sin z5in S -+ ngy €05 2) cos €] 2.13)
on = Fz,
Consequently, in order to take lnto account the non~central nature of the
earth's gravitational fleld, we must use Equation (2.13) instead of (2.5).

Moreover, since Fu and Fz are functions of ¢ , we must add « relationship
between ¢ and 2,5 :

SiNQ = ng; €08 2 €08 - Ny ¢0s z8in § + ngsin z (2.14)

As was noted earlier, m, {f) may be chosen arbitrarily.

If we assume

v
ymz- coS

o

{ng; cos § 4 nggsin S), =10 (2.15)

mlo == muo

z
then the identity & = 0 will hold, and the x,y,2, trihedron wlll coinclde
with the x,y,#%, trihedron the orientation of which 1s determined by the

coordinates of the 2,5 grld ; if the gn{ and g n,{, coordinate systems
coincide, the orlentation 1s determined by the coordinates of the g,2 grid.

Another condition that must be imposed on m, to simplify the equations
of ideal operation 1s o
m, = 0 (2.16)
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The equations for 1ldeal operation in the coordinates z,5 or ¢,\ for the
cases (2.153 and (2.16) may be obtained from the fundamental Equations (2.1),
(2.3), (2.7) to (2.10) and (2.13).

We note that if R 1s a known function of the object coordinates gz,5
or e,k and time, then the a,, eccelerometer may be omitted. This can
happen, for example, in the case of motion on the surface of the ocean, when

Wwe may assume that R =a(l —1,ésin’p) (2.17)

where ¢ 1s the seml-major axls and e 1s the eccentriclty of Clalraut's
ellipsoid. It may also happen in the case of flight near the surface of the
earth, when, in addition to (2.17), the altitude above the surface of the
earth i1s measured by means of a radio altimeter. In this case Equations
(2.8) drop out of the set of equations for ideal operation, and we add a
relation defining A as a function of the coordinates and the altimeter
readings.

The above equations for the ideal operation of an inertlal attitude con-
trol completely determine its nature (within the framework of precession
theory) only if all the components of the system are free of error, the in-
itlal position and initial angular veloclty of the xyz trihedron coincide
exactly with the posltion and velocity of the x,y,4, trihedron, and the
initial values of the coordinates and thelr rates of variation, introduced
into the computer of the system, are in exact agreement with the coordinates

and veloclty of the object at the instant the attitude control begins to
operate.

If some of these conditions are not satisfied, the motion of the attitude
control will naturally de different from the described by the equations for
ideal operatlon, the xyz trihedron will not coinclde with the xoyozo tri-
hedron, and the coordlnates obtained for the object will contain errors.

3. We shall now derive the error equations. In the derivation we shall
take into account only the instrument errors of the system : the accelero-
meter errors Aax., Aay,, Aazo, the moments Amx.,’ Amyo7 Amla’ producing
free drift in the gyroscopes, and the error 6nh. of the formulation of m;,.
It can be shown that the instrument errors of any part of the system may be
reduced to a set of equivalent fundamental errors.

Let the perturbed position of the trihedron Oxyz with respect to the
0xo Yo2o brihedron be defined by the small angles ga, 8 and y , so that the
direction cosines defining the position of these trilhedra wilth rspect to

each other form the table shown here at the right. l z l y ! z
Then the differences between the projectlons of x| 1 ——Z B (3.1)
—
the absolute angular velocity of the Qxyz tri- g:__g o 1

hedron in perturbed and unperturbed motlon are
80y, = o + @yy — 028, Sy, =P — %1 + 0, 80, =7+ 0.8 —wya (3.2)

The variations of the accelerometer readings are equal, respectively
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da,, = a,v —a.p+ Aa,, day, = —a.y+ a0+ Agy,
6a7'o = axoﬁ - a!ha + Aal. (3-3)
From (2.1) we have

aﬁ)x’ = 6mx° + Amxa’ 6(!)3;‘ = va. + Amyo, 6&);'3 = 6mz. + Am:. (3.4)

Finally, varying Equations (2.7) and (2.8), we find

H
dm,, = %— [S (day, + 8Rm,m,, -+ Rm,dmy, + Rm,dm, —

0

— R'8my, — 8R'm)dt +-R°80°%, + OR°e,° — SRm,]

t
dmy, = % [S (— da,, — R'8m,, — dR'm,, — SRm, m,, — Rm dm,, — (3.5)
0
— Rm,3my) dt + R°8wy,° + 8R°0,,° — 6Rmy,] (8m,, = 8m,,(¢))
t i
8B =\ [ —8a;, 4 BR (my? + my.2) + (GR =\or d‘“’Ro)
0 0

+ 2R (mx,dmy, + mydmy,) — 8¢ (R)l dt.+ 8 (R')°

In the variation of Equations (2.7), the varlations of the corrections
for the non-central nature of earth's gravitational field were neglected as
being small. The varlations are isochronous, the time 1s not varied, and the
timer aboard the platform is thus assumed to be ideal. The quantities
80,.°, 8005,°, SR° and B(R’)° denote-the input errors in the initlal data.

From (3.2) to (3.5), noting that

8g(R) = —2g8R /R (3.6)
bearing in mind the equations of ideal operation, performing the change of
variables

z=Ra, y=Rp (3.7)

and introducling the notation
o' =g/R (3.8
we obtain the following equations for determining x, y, 6R and y @
112" '+' (0)02 —_ (’)xoz - (Dz.z) X — ((l)x’(l)y. + (l)z.‘) y -_
— 20,y + (0, — 03,02,) OR + 20.,0R =
= Aay, + RAm, 4 2R Am,,— Ro, Amy, — RoyAm,,
!/" + (m02 - ('o'Uuz - mz.ﬂ) y - (mx.on - (!)z.') x + 2“‘)1’0:”. +
+ (mx.(!)z. + (l)y..) 63 + 20)%612. = (3-9)
_ Aax. + R Amy: + ZR' Amy. + Rmz.Amx' "!"‘ Rmx.Amz.
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OR” — (20, + 05,2 + 04,2 R — {0z, + ©y02) — (@, — ©0x,02) ¥ —
— 205,27 — 203y = — Aa,, — 2Rox, Am,, — 2Ry, Am,, (3.9)

PV I e L A 3 4
Wy & T Uiy, T Qi 0.1

The initlal conditions for Equations (3.9) and {3.10) will be
xq — Oa 0’ yo — Roﬂo, 630’ 6 (R')O, TO
()° = (R)°a’® 4+ R° (bwy,” + Amy® — 0,,°7° + 0,°B°) (3.11)
()° = (B)°B° + R° (By,” + Amy,° + 05,°7° — 0,,°2%)
We proceed to formulate the equations for the errors in the coordinates
z, § and the azimuth angle ¢ . Varying Equations (2.10), we obtain
8z’ = — dm,, cos & - dmy, sin e - (my, sin e + m,, cos e) 8 — (3.12)
— u{ng, €08 S -+ ng,sin S) 88
88" cos 2= dm,, sine + dm,, cose +
+ (my, c0s & — my, sin &) 8 -+ wn z (m,, sin & + my, cose) 8z 4
+ usin z(— ng sin S - ngy c0s 8) 88 + u gec z (n3, cos S -} ng, sin §)8z
8¢’ cos z = dm,_ cos z — sin z(8m,, sin & + dmy, cos €) —
— sin z(my, cos & — my, sin &) 8e 4 u (ng,sin § — ng, cos §) S —
— [sec z (my,sin & -+ my, cos &) + u un z(ng, cosS + ng,ysin S)] 8z
By introducing the new variables a,, B, and vy,
o, = —08zcose 4 85 cos zsine, [, =0zsine-4dScoszcose
7, =04 8Ssinz (3.13)
we can transform Equations (3.12) to the form
oy = dmy, + Byms, — 1imy, By = dmy, — oty -+ Y177,
Y1 = dmz, — Bums, + oymy, (3.14)

It is readily seen that the variables gq;, B, and vy, represent the angu-
lar errors in the determination of the coordinates and the azimuth.

From {3.%) and (3.14), again introducing new variables
Olg == Oy — 0ty Bo =B, —B. Te=7T1—7 (3.15)
we obtailn a second group of equations for the error of the lnertlal attitude

coentrol

oy — @z 8e + 0y = — Amy,, B — 0x7s + 0,0, = — Am,, (3.16)

T2 — Oyds + OBy = — Amg,
The initial conditions for the differential equations (3.16) are found
from (3.13) and (3.15).

If there is no accelerometer along the z,-axis and information on the
magnitude of # 1s glven in addition, then the third equation drops out of
the first group (3.9) of error equations. If R. is given elther as a
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constant or as a function of time, then &R and &R’ which appear in the
first two equations of (3.9), will be known {possibly random) functions of
time. In the case where R and R° are determined by the attitude control
as functions of the other two coordinates of the object, we must consider
also the equatlions obtained by varylng these functions. Thus, if the motion
takes place on the surface of the ocean, we have

0R = OR(p) + AR (3.17)
where B8R(p) 1s obtained by varying (2.17) and (2.14), and AR 1s the instru-
ment error.

The error equations (3.9), (3.10), {3.15) and (3.16) are fairly general.
They constitute the error equations of an arbltrary inertial system for the
selfcontalned determination of the coordinates of an object by means of
accelerometers and gyroscopes. They are essentially obtained directly from
Newton's laws. The concrete system considered here was used only as a frame-
work for deriving them, and no parameters of this system appear on the left-
hand sides of (3.9}, (3.10), (3.15) and (3.16).

It will be shown below that the special cases of these equations will
include the equations for the small oscillations of a physical pendulum with
an extended length equal to the radius of the earth [2] and [9], the equa-
tions of a two-gyroscope pendulum [4] and [6], and the equations of a gyro-
horizon compass {north-seeking gyroscope) studiled in [3,5,6 and T7J].

4, We shall prove that Equations (3.9), (3.10), (3.15) and (3.16) make
possible a group of rotations by an arbitrary angle ﬁ‘(ﬁ about the 0z,-
axis. This property follows from the fact that nyo(ﬂ 1s arbitrary, and
consequently so is the angle e characterlzing the orientation of the tri-
hedron in azimuth. This also may be proved directly. In equations (3.9),
(3.10) and (3.16) we adopt the new variables z’, Yy , OR’, 7', (OR'Y, a,', &',
BIZ Bz'lez Tzlby the nonsingular linear transformation

z=2z'cos¥® —y sin, y=a'sin?® -+ y cos¥ (4.9
a;=a, cos® —B, sin?, o= a, cos ¥ — P, sin®

Bi=o, sin® 4B, cos®, P,=a," sin® +p," cos¥

=7, m=7" T.=7', OR=98R, SR =(SR)

where 1 (f) 1s an arbitrary function of time. The transformation lnverse
to (4.1) is obvious. The transformation (4.1) converts Equations (3.9),
(3.10) and (3.16) into equations in new variables with the newly derlved
equations retaining the same form as the original equations. The coefficl-
ents and the right-hand sides are transformed as follows:

’

0r, = 05,c08% +0,sin?, 0y = —0sin®+ 0,c050, 0, =a0,+ ¢
R' =R, (RY=R, (00 =a"
Aa,' = Aa, cos® + Aa, sin®, Aa,’= — Aa, sin® + Aay, cos ¥
Aa,) = Aa,, Am, = Am,, dm.;’/ = dm,, (4.2)
Amy' = Am,, cos ¥ -+ Amy,sin®, Amy' = — Am,, sin O 4 Amy, cos ¥

To prove thils, we substitute (4.1) and (%.2) into 3.9;, (3.10), (3.15)
and (3.16). Substitution into the third equation of .9), into Equation
(3.10? and into the last equations of (3.15) and (3.16) immedlately shows
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the vallidity of the foregolng statement for these equations. After substi-
tuting into thq first and second equations of (3.9), we must multiply them
by cos¥ and sin® ; respectively, and add the results; we then obtain the
first equation of the new system. If we multiply by-sin & and cos @, re-
spectively, and then add, we obtain the second equation. In a similar man-
ner we can obtaln the new equatlons for a,’, 8, and aj, BJ from the first
two equations of (3.15) and (3.16).

From (4.1) and (4.2) we see that the inverse transformation is obtained
from the direct transformation i1f we replace 9 by — ﬁ; finally, we can
readily establish that the two successive transformatilons ﬂl and ﬁ@ are

equivalent to one transformation such that ’&3 = ’01 -+ ﬁz.

The above property of Equations (3.9), (3.10), (3.15) and (3.16) enables
us, 1n the analysis of this system, to select the accompanying trihedron
OxoYo2o 1in different ways for different laws of object motlon. In a number
of cases 1t 1s convenlent to use a trihedron one of whose axes, for example
Xy, 1les in the plane .containing the object's absolute velocity vector and
the center of the earth. The angle & (£) 1s obviously found from the con-
dition @, = 0,which ylelds

wn ® =0,/ 0y, (4.3)

The equations for this case are obtained from (3.9), (3.10), (3.15) and
(3.16) for @, = 0.

In most cases the problem of a navigational system 1ncludes the determi-
nation of object coordinates wlth respect to the earth; for this reason,
the sultable cholce for the angle ¥ will be one for which one of the axes
lies 1in the plane containing the relatlve velocity vector and the center of
the earth.

It 1s also found useful to employ an azimuthally free trihedron in which
¢ 1s found from the condition @;’ = 0; hence
t
8= —{o,dr (4.4)
0
Appropriate equations are obtained from the system (3.9), (3.10)}, (3.15)
and (3.16) for W, = 0. Since in this case the equations are I1ndependent
of (g, while O, and @y, are limited by the upper velocity limlt of the
object, it is sometlimes easler to analyze equations in this form.

Ir O 1s so chosen that the x,y,2, trihedron becomes orilented with
respect to the cardinal polnts, it 1s convenient to analyze equations (3.9),
(3.10), (3.15j and (3.16), for an object which 1s motionless with respect to
the earth or which moves along a parallel.

If there 1s no accelerometer along the 2,-axls, then for Aax,== Aayn::
= Amx0 = Am,, = Amz° = ( , the first two equations of (3.9) become the
equations for the small oscillations of a speclal physical pendulum [2] and
[9]. The left-hand sides of these equations are of the form [2]
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z" 4 (0® — g, — 03 & — (05,04, + 02,) ¥y — 20,y =0
¥+ @ — 0, — 0,y — (050, —02)Z + 20,2 =0 (4.5)

The equations for the small oscillations of a two-gyroscope pendulum [4],
the Anschiitz-Geckeler gyro-horizon compass [ 3] and the system for the self-
contained determination of object coordinates [1] reduce to Equations (4.5).

For example, the equations for small oscillations of a gyro-horizon com-
pass before simplification [ 3] have the form

— mi (va) d IFf = —@2B8 sin o, B+@/Ra=wr (4.6)

T 4+ (2B§sinc)/ miR = —of, ~ {2B3 sino) 1 (F— me® | R) y = mla

Here B and y are the angles by whieh the platform of the gyro-horlzon
compass devlates from the edges of the Darboux trlhedron Ox,y,z,, Whose
Oxy,-ax1s is directed along the vector of the absolute velocity v of motion
of the object and m, 1, B and R = #° are constants,

v = o,R, ©=a,, F=mg (4.7)

. Eliminating o and 28§ sing from (4.6) and making use of (4.7), we
obtaln

B+ off = 0, B + o, v+ 20,7, 1"+ ofr=(0,F+ 0,971 0, B — 20,8 (48

Singe, 1n the case under consideration, in equations (4.5} we should set
@, = Uand the g,y of Equation (4.8) correspond to the q,8 of Equation
(4.6), 1t follows that these equations are identical. The identity of the
equations of a two-gyroscope pendulum [4)] and the system considered in [1]
1s proved in a simlilar manner.

In {1}, [3] and [4] a solution is given for the simplified equations (4.6),
using a complex-valued formulation. The simplification Introduced consists
of the fact that in (4.8) » 1s considered equal to zero. This is equi~
valent to the simplification @, = ®, =Uin Equations {4.5). Writing Equa-
tions (4.5) with respect to an azimuthﬁlly free trihedron, we obtain in this

case
(@')" + ofa’ =0, B+ ofp’ =0 (4.9)

The solution of Equations (4.9) is obvious.

It must be noted that [1] and [ 2] pointed out to the eguivalence of Equa-
tions 24.6; and (4.5), and [ 2], in addition, showed that the form of Equa-
tions (4.5) is retained under’ the transformation (4.1) and (4.2), and noted
that neglecting ®, in (4.8) reduces the equations to the harmonic equations
(4.9). Apparently,® these comments escaped attention, and therefore in [5]
and [ 6] considerable effort was wasted in proving that in the case mu°?=
Equations (4.8) can be reduced to equations with constant coefficients.

The stability of the system (4.6) for constant w and v and small
values of the varlables 1is 1nvestigated in [7]. The Liapunov stabllity con-
dition, derlved in these studies

of — 0, — 0, >0 (4.10)

may also be obtalned by investigating the characterlstic equations of the
system (4.8) by Hurwitz's method if an arbitrarily small total dissipation
is introduced into this system.

The three equations (3.9) form a closed system and may ‘be considered
independent of the others. Together with (3.7}, they determine the angular
osclllations of the attitude control platform with respect to the 0Oux,y,ze
trihedron in the angles q and B , and also the quantity 8% . If from
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these we find x, y and 8% , then we can use (3.7) to determine by quadra-
tures the angle y of the azimuthal oscillations of the platform from Equa-
tion {3.10). Equations (3.16)} also form a closed system. If we find from
these the angles a,,B, and y,, and make use of the solutions x and y
of Equations (3.9) and also (3.7) and (3.15), we can obtain solutions for
a;, B; and vy, which determine the errors in the azimuth angle and the co-
ordinates computed by the attitude control system.

In the general case (3.9), (3.10) and (3.16) are equations with variable
coefficlients, Thelr right-hand sides may be eifther explicite or random
functions of time. For this reason, the study of these equations involves
considerable difficulty.

Only in a few special cases can equations (3.9}, (3.10) and {3.16) be
reduced to equations with constant coefficients. These cases lnclude : a
base which 1s motlonless in the coordinate system 0/'E,nu{x (in this case
may be any arbitrary function of time); motion at constant veloclity at a
fixed distance from the center of the earth in a plane passing through that
center; and motion at constant velocity along & parallel,

Plane motion at a constant distance from the center of the earth, for a
case in which the object veloclty varies in a specified manner, reduces the
system (3.9) to the Mathieu-H1ll equation.

For the general case of object motion the system {3.16) coincides with
the equations that determine the direction cosilnes p,, of the axes of the
trihedron 0x,yo,2, In the coordinate system 0¢’E.m,(, on the basls of speci-
fied values of Wy, Wy, ®z. This system has a first integral and reduces to
the Riccati equation [10]. However, if the objJect motion is specified in
such a way that the n,, are known functlons of time, the system (3.16) may
be integrated to the end.

The analysis of Equations {3.9), {3.10) and (3.16) may be facilitated by
the fact that these are equations in varlations, so that no great accuracy
1s required in theilr solution. For this reason, various approximate methods
of calculation may be used. Different methods may be found suitable for
different classes of object motion. Examples of such classes of motion may
be found in the motion of sea-going ships, the motion of alrcraft in the
atmosphere and Keplerlan or nearly Keplerian motion.

The first of these classes of motion is characterized by the fact that
the velocity v, with respect to the earth 1s low in comparison with the
circumferential veloclty of motlon of points of the Equator,

/R < u (4.11)

and that the change in dlstance from the center of the earth, caused by the
fact that the earth is not a perfect sphere, is small. In this class of
motion the amount of time spent in continuous operation may be large. For
this case the initial solutions to be refined by approximation methods may
be taken to be the solutions for the case of a base motlonless with respect
to the earth.

For the second class of motion the veloclity is considerably greater than
the circumferential velocity of rotation of the earth, but much smaller thén
the circular orbital veloclty, 1.e.
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B <o <ol ur << c)%’ <€ wg? (4.12)
the amount of change In 2 1s small and the time required for continuous
operation is small in comparison with the first case. For this class the
initlal solution may be taken to be that for the case of a base motlonless

in absolute space or else for the case of plane motion in the coordinate
system 0'€,nufy.

Finally, for Keplerlan and nearly Keplerian motion when o and ® , are
comparable to w,, the initial solutions used may be those for the case of
plane motlon, and for Keplerian motion with a small orbital eccentriclty we
may use the case of plane motlion at a constant distance from the center of
the earth (a circular orbit).

In some cases 1t 1s useful to specify Equations (3.9), (3.10), {(3.15) and
(3.16) as projections on the axes of the coordinate system 0'f,m.(s

(BE) + 55 [0, + 64* — 28,%) 88, — 38,00, — 3E,Lu00,1 = (4.13)
= — Aag* — 20, Amg* + 20, Am,* — ny (Ame*) + 0y (Am,*)
(8n)" + “}7": [(Ca® + &4® — 2n,%) On,' — 3n, 080, — 3n, B, 8L,/ ] =
= — Aa* — 20, Ame* + 28, Ame* — Ty (Ame®) + Ey (Amg*)
(8L )"+ ;—gz [(Be® + My® — 20,7 80, — 3E,L.08, — 3Ny Labny’l =

= — Aag* — 28,Am,* + 20 Ame* — §, (Am*)" + 1, (Amg*)’
R*=§2 'f‘ 71*2‘ + L2

In order to find the errors 1n the coordinates, Equatilons

88, = OF," + OE,", Ony = O, + &, G_C* = 8%, + 8L, (4.44)

must be supplemented by the relations ) (4.15)
08, = MNyTsx — Cubar 0N = — BTy + TsCis 8L, = Eubu — M.,
where ayg, By 8nd vy, are found from Equations
e = Bmg,, By = Am,, T, = Amg, (4.16)

From {4#.16) and (3.16) it follows that {3.16) 1s integrable when the n,,
are given.

The structure of Equations (%.13) to {4.16) 1s similar to Equations {3.9),
{3.10), (3.15) and {3.16). They may be either obtained by projecting Equa-
tions (3.9), (3.10), (3.15) and (3.16) on the axes of 0’Eun.{s or derived
directly as the equations for the errors in an inertial system in which the
accelerations are measured along the direction 0g,, Ony, and 0(4, which
have a fixed orientation in space. Equations {4#.13), (4.1%}), (4.15) and
(4.16) retain their form when a change 1s made to an arbitrary trihedron
g2 ne Cx wWhose orientation with respect to Z,n,{, remains fixed.

The author is grateful to A.Iu., Ishlinskii and V.N. Koshliakov for their
comments on the present work.
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